Sports Ice Spa: Supporting Evidence

Cryotherapy for Acute Ankle Sprains

Reference

Bleakley CM, McDonough SM, MacAuley DC, Bjordal J.

Health and Rehabilitation Sciences Research Institute, University of Ulster, Jordanstown BT37 0QB, County Antrim, Northern Ireland, UK.

Br J Sports Med. 2006 Aug;40(8):700-5; discussion 705. Epub 2006 Apr 12.

Background

The use of cryotherapy in the management of acute soft tissue injury is largely based on anecdotal evidence. Preliminary evidence suggests that intermittent cryotherapy applications are most effective at reducing tissue temperature to optimal therapeutic levels. However, its efficacy in treating injured human subjects is not yet known.

Objective

To compare the efficacy of an intermittent cryotherapy treatment protocol with a standard cryotherapy treatment protocol in the management of acute ankle sprains.

Subjects

Sportsmen (n = 44) and members of the general public (n = 45) with mild/moderate acute ankle sprains.

Methods

Subjects were randomly allocated, under strictly controlled double blind conditions, to one of two treatment groups: standard ice application (n = 46) or intermittent ice application (n = 43). The mode of cryotherapy was standardised across groups and consisted of melting iced water (0 degrees C) in a standardised pack. Function, pain, and swelling were recorded at baseline and one, two, three, four, and six weeks after injury.

Results

Subjects treated with the intermittent protocol had significantly (p<0.05) less ankle pain on activity than those using a standard 20 minute protocol; however, one week after ankle injury, there were no significant differences between groups in terms of function, swelling, or pain at rest.

Conclusion

Intermittent applications may enhance the therapeutic effect of ice in pain relief after acute soft tissue injury.

The evidence suggested that intermittent 10 minute applications were most effective at reducing both skin and deep tissue temperature to optimal therapeutic levels, and melting iced water was deemed the safest and most efficient method of application. Although this provides preliminary evidence based recommendations for an optimal protocol, its efficacy in treating injured human subjects is not yet known.

Cryotherapy and Soft Tissue Injuries

Reference

Bleakley C, McDonough S, MacAuley D. The use of ice in the treatment of acute soft-tissue injury: a systematic review of randomized controlled trials. Am J Sport Med. 2004; 32:251-261.

Clinical Question

What is the clinical evidence base for cryotherapy use?

Data Sources

Studies were identified by using a computer-based literature search on a total of 8 databases: MEDLINE, Proquest, ISI Web of Science, Cumulative Index to Nursing and Allied Health (CINAHL) on Ovid, Allied and Complementary Medicine Database (AMED) on Ovid, Cochrane Database of Systematic Reviews, Cochrane Database of Abstracts of Reviews of Effectiveness, and Cochrane Controlled Trials Register (Central). This was supplemented with citation tracking of relevant primary and review articles. Search terms included surgery, orthopaedics, sports injury, soft tissue injury, sprains and strains, contusions, athletic injury, acute, compression, cryotherapy, ice, RICE, and cold.

Study Selection

To be included in the review, each study had to fulfill the following conditions: be a randomized, controlled trial of human subjects; be published in English as a full paper; include patients recovering from acute soft tissue or orthopaedic surgical interventions who received cryotherapy in inpatient, outpatient, or home-based treatment, in isolation or in combination with placebo or other therapies; provide comparisons with no treatment, placebo, a different mode or protocol of cryotherapy, or other physiotherapeutic interventions; and have outcome measures that included function (subjective or objective), pain, swelling, or range of motion.

Data Extraction

The study population, interventions, outcomes, follow-up, and reported results of the assessed trials were extracted and tabulated. The primary outcome measures were pain, swelling, and range of motion. Only 2 groups reported adequate data for return to normal function. All eligible articles were rated for methodologic quality using the PEDro scale. The PEDro scale is a checklist that examines the believability (internal validity) and the interpretability of trial quality. The 11-item checklist yields a maximum score of 10 if all criteria are satisfied. The intraclass correlation coefficient and kappa values are similar to those reported for 3 other frequently used quality scales (Chalmers Scale, Jadad Scale, and Maastricht List). Two reviewers graded the articles, a method that has been reported to be more reliable than one evaluator.

Main Results

The average number of subjects in the studies was 66.7; however, only 1 group undertook a power analysis. The types of injuries varied widely (eg, acute or surgical). No authors investigated subjects with muscle contusions or strains, and only 5 groups studied subjects with acute ligament sprains. The remaining 17 groups examined patients recovering from operative procedures (anterior cruciate ligament repair, knee arthroscopy, lateral retinacular release, total knee and hip arthroplasties, and carpal tunnel release). Additionally, the mode of cryotherapy varied widely, as did the duration and frequency of cryotherapy application. The time period when cryotherapy was applied after injury ranged from immediately after injury to 1 to 3 days postinjury.

Ice submersion with simultaneous exercises was significantly more effective than heat and contrast therapy plus simultaneous exercises at reducing swelling. Ice was reported to be no different from ice and low-frequency or high-frequency electric stimulation in effect on swelling, pain, and range of motion. Ice alone seemed to be more effective than applying no form of cryotherapy after minor knee surgery in terms of pain, but no differences were reported for range of motion and girth. Continuous cryotherapy was associated with a significantly greater decrease in pain and wrist circumference after surgery than intermittent cryotherapy. Evidence was marginal that a single simultaneous treatment with ice and compression is no more effective than no cryotherapy after an ankle sprain. The authors reported ice to be no more effective than rehabilitation only with regard to pain, swelling, and range of motion.

Conclusions

Based on the available evidence, cryotherapy seems to be effective in decreasing pain. In comparison with other rehabilitation techniques, the efficacy of cryotherapy has been questioned. The exact effect of cryotherapy on more frequently treated acute injuries (eg, muscle strains and contusions) has not been fully elucidated. Additionally, the low methodologic quality of the available evidence is of concern. Many more high-quality studies are required to create evidence-based guidelines on the use of cryotherapy. These must focus on developing modes, durations, and frequencies of ice application that will optimize outcomes after injury.